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Abstract

Connectivity and relatedness of Web resources are two concepts that define to what extent different parts are connected or

related to one another. Measuring connectivity and relatedness between Web resources is a growing field of research, often the

starting point of recommender systems. Although relatedness is liable to subjective interpretations, connectivity is not. Given

the Semantic Web’s ability of linking Web resources, connectivity can be measured by exploiting the links between entities.

Further, these connections can be exploited to uncover relationships between Web resources. In this paper, we apply and

expand a relationship assessment methodology from social network theory to measure the connectivity between documents.

The connectivity measures are used to identify connected and related Web resources. Our approach is able to expose relations

that traditional text-based approaches fail to identify. We validate and assess our proposed approaches through an evaluation

on a real world dataset, where results show that the proposed techniques outperform state of the art approaches.
c© 2013 The Authors. Published by Elsevier B.V.
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1. Introduction

User-generated content is characterized by a high degree of diversity and heavily varying quality. Given

the ever increasing pace at which this form of Web content is evolving, adequate preservation and detection of

correlations has become a cultural necessity. Extraction of entities from Web content, in particular social media,

is a crucial challenge in order to enable the interlinking of related Web content, semantic search and navigation

within Web archives, and to assess the relevance of a given set of Web objects for a particular query or crawl.

As part of earlier work, we have developed a processing chain dealing with entity extraction and enrichment,

consisting of a set of dedicated components which handle named entity recognition (NER) and consolidation

(enrichment, clustering, disambiguation) as part of one coherent workflow (see [3] for more details).

Traditional approaches to finding related Web resources (e.g. documents) are often addressed using a com-

bination of Information Retrieval (IR) and Natural Language Processing (NLP) techniques. These techniques
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Fig. 1: Example: connections between Web documents, extracted entities and DBpedia enrichments within

ARCOMEM dataset.

compute the similarities between a set of terms from specific resources based on their overlap, or through latent

semantic analysis [4] measuring relatedness of individual terms and resources. Nonetheless, most of these tech-

niques require large corpora and a partially common vocabulary/terminology between the resources. Thus, in such

cases, they fail to detect latent semantic relationships between resources.

On the other hand, semantic approaches exploit knowledge defined in a data graph to compute notions of

similarity and connectivity [18]. Our approach explicitly targets connectivity as a measure of the relationship
between two Web resources, as opposed to their similarity.

An example is derived from datasets specific to the ARCOMEM project1, which primarily consist of extracted

information about events and entities (see [3]). ARCOMEM follows a use case-driven approach based on scenarios

aimed at creating focused Web archives, particularly of social media, by adopting novel entity extraction and

interlinking mechanisms. These archives deploy a document repository of crawled Web content and a structured

RDF knowledge base containing metadata about entities and events detected in the archived content.

For instance, Figure 1 shows three sets of Web resources (depicted at the top), each associated with one

particular entity/event, where the entity (“Jean Claude Trichet”) and event (“Trichet warns of systemic debt crisis”)

are both enriched with the same DBpedia2 entity (http://dbpedia.org/resource/Jean-Claude-Trichet).

This allows us to cluster the respective entity and event, and their connected Web resources, as an example of

direct connection (solid red line in the diagram). However, the third set of Web resources is connected with

a third entity (“ECB”) which refers to the European Central Bank, enriched with the corresponding DBpedia

resource (http://dbpedia.org/resource/ECB). While NLP and standard IR approaches would fail to detect

a connection between them, analysing the DBpedia graph uncovers a close connection between ECB and Jean
Claude Trichet (being a former ECB president), and hence allows us to establish a connection (dashed line)

between all involved entities/events and their connected Web resources. Analysis of the reference data graph

thereby allows us to identify implicit connections between entities and documents.

In this paper, we present a general-purpose approach to detect and measure semantic connectivity between

entities within reference datasets as a means to compute connectivity between Web resources (documents) in

disparate datasets and document corpora. Our semantic connectivity score is based on the Katz index [13], a score

for measuring relatedness of actors in social networks, which has been adopted and expanded to take into account

the semantics of data graphs.

1http://www.arcomem.eu
2http://www.dbpedia.org/
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In previous works [16, 15], we have introduced the semantic connectivity score between entities and an in-

depth analysis of how semantic graphs can be exploited to uncover latent connections between entities. In this

paper, we extend the previous approach based on entity connectivity to find latent connections across documents.

The remainder of the paper is structured as follows. Section 2 presents an overview of related research.

Section 3 introduces the semantic connectivity score between documents. Sections 4 and 5 show the evaluation

method and the outcomes of our method. Finally, Section 6 presents the conclusion and future work.

2. Related Work

Kaldoudi et al. [12] discusses how to apply the overall approach of actor/network theory to data graphs. Graph

summarization is an interesting approach to exploit semantic knowledge in annotated graphs. Thor et al. [19]

exploited this technique for link prediction between genes in the area of Life Sciences. Their approach relies on

the fact that summarisation techniques can create compact representations of the original graph, by adopting a set

of criteria for creation, correction and deletion of edges and grouping of nodes. Thus, a prediction function ranks

the edges with the most potential, and then suggests possible links between two given genes.

Potamias et al. [17] presents another approach based on Dijkstra’s shortest path along with random walks in

probabilistic graphs to define distance functions that identify the k closest nodes from a given source node.

Lehmann et al. [11] introduces RelFinder, which shows semantic associations between two different entities

from RDF datasets, based on a breadth-first search algorithm responsible for finding all related entities in the

tripleset. In this work, we use the RelFinder approach to exploit the connectivity between entities.

In the field of Social Networks, Hasan and Zake [10] present a survey of link prediction techniques, where they

classify the approaches into the following categories: feature based link prediction, bayesian probabilistic models,

probabilistic relational models and linear algebraic methods. According to this classification, our approach can

be classified as a feature based link prediction method. Work from Leskovec et al. [14] presents a technique

suggesting positive and negative relationships between people in a social network. This notion is also addressed

in our method, but we take into account the path length as mentioned previously.

Finding semantic relationships between two given entities is also discussed in the context of ontology match-

ing [9, 20, 21]. In our case, hub ontologies could also be used to infer missing relationships into another ontology.

From the approaches outlined, we combine different techniques to uncover connections between disparate en-

tities, which allows us to exploit the relationships between entities to identify connections between Web resources.

3. Document Connectivity

In this section we present the main steps of the process chain of our approach. The whole process is composed

of four steps, described as follows:

S1. Entity Extraction – pre-processing of documents for finding and extracting term references and named

entities;

S2. Entity Enrichment – matching of references in external knowledge bases such as DBpedia and Freebase3;

S3. Entity Connectivity – uncovering of latent relationships between entities and induction of connections

amongst entities.

S4. Document Connectivity – uncovering latent relationships between documents through entity connections

and inducing connections amongst documents.

Steps 1-3 have been introduced in our previous work [16, 15] and therefore, in this section, we focus on Step

4, the contribution of this work, in which we discover latent connections between documents. However, Step 3,

defined in our previous works, is of paramount importance in order to fully understand Step 4.

3http://www.freebase.com



234   Bernardo Pereira Nunes et al.  /  Procedia Computer Science   22  ( 2013 )  231 – 240 

3.1. A novel approach to document connectivity

In this section, we define a document connectivity score which relies on connections between entities based

on reference graphs. Before introducing the document connectivity approach, we recall how Step 3 (described

in [15]) uncovers latent connections between entities which our approach builds upon.

3.1.1. Entity Connectivity
As the main goal of this work is to uncover latent information between documents, we first exploit the content

of the documents to find connections between terms and entities that occur in the documents that would in turn

induce connections between the documents themselves. For this, we first process the documents to find and extract

term references and named entities, and then enrich these mentions using reference datasets (e.g. DBpedia).

Assuming that this process is already solved by previous approaches, we stick to the problem of finding

latent connections between entities. We briefly introduce the semantic connectivity score (S CS e) responsible

for discovering latent connections between entity pairs. S CS e is based on the Katz index [13] which is used

to estimate the relatedness of actors in social networks. To adapt the Katz index for finding latent connections

between entity pairs in large graphs, we have applied three main adaptions described as follows:

1. Maximum path length: Traversing large graphs is computationally expensive and the computation of all

paths between entity pairs is computationally intractable. Thus, to make our approach feasible, we restrict

the computation of paths between entity pairs with a maximum path length of four intermediate edges (links)

in-between.

Note that the maximum path length exploited was previously determined after comprehensive tests pre-

sented in [15], and also adopted in [5].

2. Undirected graphs: Reference graphs like DBpedia and Freebase have object properties that are often found

in their inverse form. For instance, as described in [8], the property fatherOf is the inverse property of sonOf.
Thus, we explore connectivity between entity pairs without taking into account the edge direction. Hence,

the semantic connectivity scores between entities are the same for both directions.

3. Transversal paths: As described in [2], we distinguish relation types found in reference graphs as hierarchi-
cal and transversal. Concisely, hierarchical relations indicate similarity through typical hierarchical rela-

tions between entity pairs. Examples of hierarchical relations are: rdfs:subclassOf, dcterms:subject
and skos:broader. Unlike hierarchical relations, transversal relations indicate entity connectivity inde-

pendent of their similarity, i.e. non-hierarchical relations. Thus, to compute the semantic connectivity score

between entity pairs we consider only transversal relations. An example of transversal relation is given

by the entity pairs “Jean Claude Trichet” and “European Central Bank” introduced in Section 1, where

the “European Central Bank” is linked to the entity “President of the European Central Bank” through

the transversal RDF property http://dbpedia.org/property/leaderTitle that, for its part, links

to “Jean Claude Trichet” through another transversal RDF property http://dbpedia.org/property/
title.

Having introduced and defined the scenario in which we compute the semantic connectivity score (S CS e)

between an entity pair (e1, e2), we now present the Equation:

S CS e(e1, e2) = 1 − 1

1 + (
∑τ

l=1 β
l · |paths<l>

(e1,e2)
|) (1)

where |paths<l>
(e1,e2)
| is the number of transversal paths of length l between entities e1 and e2, τ is the maximum

length of paths considered (in our case τ = 4), and 0 < β ≤ 1 is a positive damping factor. The damping factor

βl is responsible for exponentially penalizing longer paths. The smaller this factor, the smaller the contribution

of longer paths is to the final score. Obviously, if the damping factor is 1, all paths will have the same weight

independent of the length. In previous experiments, we observed that β = 0.5 achieved better results in terms of

precision [16]. Equation 1 is normalised to range between [0, 1).
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Returning to the example presented in Section 1, we compute the semantic connectivity score for the entities

“Jean Claude Trichet” (JCT) and “European Central Bank” (ECB), using DBpedia as the reference tripleset.

Omitting the details, let us assume that we obtained 8 paths of length 2, and 14 paths of length 3, resulting in the

following score:

S CS e(JCT, ECB) = 1 − 1

1 + (0.52 · 8 + 0.53 · 14)
= 1 − 1

1 + (2 + 1.75)
= 0.79 (2)

Note that even for a small number (i.e., 8) of short paths (of length 2), the contribution to the overall score is

larger than for longer paths (of length 3). Evidently, the score obtained by a longer path can overcome a shorter

path depending on the number of paths found and the damping factor assigned.

3.1.2. Document Connectivity
Based on the semantic connectivity score between entity pairs (S CS e), we then define the semantic connec-

tivity score (S CS w) between two Web resources W1 and W2 as follows:

S CS w(W1,W2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, iff |E1| = 0 or |E2| = 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

e1∈E1
e2∈E2
e1�e2

S CS e(e1, e2) + |E1 ∩ E2|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· 1

|E1| · |E2| , otherwise
(3)

where Ei is the set of entities found in Wi, for i = 1, 2. Note that the score is normalised between [0,1]. The score

S CS w(W1,W2) is 0 when no connection between entity pairs across documents exists or iff |E1| = 0 or |E2| = 0.

Otherwise, the score is represented by the sum of semantic connectivity scores between entities, normalised over

the total number of entity pair comparisons.

To illustrate the semantic connectivity score between document pairs, we present two descriptions of doc-

uments extracted from the USAToday4 corpus. We observe that the underlined terms are entities previously

recognised through the entity recognition and enrichment process (S.1 and S.2).

(i) The Charlotte Bobcats could go from the NBA’s worst team to its best bargain.

(ii) The New York Knicks got the big-game performances they desperately needed from Carmelo Anthony and

Amar’e Stoudemire to beat the Miami Heat.

Thus, for each entity in document (i) and document (ii), we compute the semantic connectivity score (S CS e)

between entities. Table 1 summarises the scores between entity pairs between documents (i) and (ii).

Table 1: Semantic connectivity scores between entity pairs in document (i) and (ii).

Entities from document (i) Entities from document (ii) S CS e

Charlotte Bobcats New York Knicks 0.87

Charlotte Bobcats Carmelo Anthony 0.63

Charlotte Bobcats Amar’e Stoudemire 0.60

Charlotte Bobcats Miami Heat 0.89

NBA New York Knicks 0.85

NBA Carmelo Anthony 0.60

NBA Amar’e Stoudemire 0.63

NBA Miami Heat 0.87

4http://www.usatoday.com
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Thus, the final score between the documents (i) and (ii) is:

S CS w(W1,W2) =
(0.87 + 0.63 + 0.60 + 0.89) + (0.85 + 0.60 + 0.63 + 0.87)

2 · 4 =
5.96

8
= 0.74 (4)

4. Evaluation Method

In this section, we describe in detail the evaluation methodology and experiment setup used to validate our

hypothesis of uncovering latent relationships between Web resources (entities and documents) using the semantic

connectivity score S CS w.

4.1. Dataset

The dataset used to evaluate our approach consists of a subset of randomly selected news articles (documents)

from the USAToday news Website. In total, we consider document connectivity for 40,000 document pairs. Each

document contains a title and a summary, where the latter is 200 characters long on average. We performed the

entity extraction step using DBpedia Spotlight5. The resulting set of annotations consists of approximately 80,000

entity pairs.

4.2. Gold standard

In order to validate the results of our evaluation, the first step is to obtain a ground truth of relationships be-

tween documents. Given the lack of such benchmarks, we conducted a user evaluation to collect user judgements

with the aim of creating a gold standard. The user evaluation was set up in CrowdFlower6, a crowdsourcing plat-

form. In order to construct the gold standard, we randomly selected 600 document pairs to be evaluated. The

evaluation process consisted of a questionnaire on a 5-point Likert scale model where participants were asked to

rate their agreement of the suggested semantic connection between a given document pair.

Additionally, we inspected participants’ expectations regarding declared connected document pairs. In this

case, presenting two documents deemed to be connected, we asked participants if such connections were expected

(from extremely unexpected to extremely expected, also on a 5-point Likert scale). The judgements collected

provide us with a gold standard for the analysis of our techniques. Note that in this work, additional challenges

are posed with respect to the gold standard, because our semantic connectivity score is aimed at detecting possibly

unexpected relationships which are not always obvious to the user. To this end, a gold standard created by humans

provides an indication of the performance of our approach with respect to precision and recall, but it may lack

appreciation of some of our found relationships.

4.3. Evaluation Methods

To emphasise the benefits of measuring connectivity between documents using our approach, we compared

it against competing methods which measure connectivity via co-occurrence-based metrics to detect entity and

document connectivity. In the first evaluation, we compared the performance of S CS w against two methods

outlined below.

Co-occurrence-based method (CBM) is a co-occurrence-based score between entities that relies on an ap-

proximation of the number of existing Web pages that contain these entities. For example, Nunes et al. [16]

estimates the co-occurrence score of entity pairs by issuing queries (such as “Jean Claude Trichet” + “European
Central Bank”) to a search engine and retrieving the total number of search results that contain the entity labels

in their text body. We interpret a large number of pages as an indicator of high connectivity, and a small number

of pages as an indicator of low connectivity between the queried terms (which represent entities in our case).

Besides CBM, there are other similar approaches to quantify the relatedness between entities, such as Pointwise

5http://spotlight.dbpedia.org/
6https://www.crowdflower.com/
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Mutual Information (PMI)[1] and Normalised Google Distance (NGD)[7]. However, they take into account the

joint distribution and the probability of their individual distributions, which requires knowing a priori the total

number of Web pages searched by a search engine. Thus, in this case, the document connectivity score is given

by a small adjustment in Equation (3) where, instead of S CS w, we use CBM.

Explicit Semantic Analysis (ESA) proposed by Gabrilovich and Markovitch [6] measures the relatedness

between Wikipedia7 concepts by using a vector space model representation, where each vector entry is assigned

using the tf-idf weight between the entities and its occurrence in the corresponding Wikipedia article. The final

score is given by the cosine similarity between the weighted vectors.

In order to evaluate the document connectivity, we compared our method with the traditional statistical tf-idf
method, in addition to ESA and CBM. As mentioned, the latter method was slightly modified to measure the

connectivity between documents, where in Equation (3) we replaced the semantic score with the co-occurrence-

based score.

4.4. Evaluation Metrics

For measuring the performance of the doccument connectivity approaches, we used standard evaluation met-

rics like precision (P), recall (R) and F1 measure. Note that in these metrics, as relevant pairs, we consider those

marked in the gold standard (gs) as connected according to the 5-point Likert Scale (Strongly Agree & Agree).

For the document connectivity, the precision measure (Pw) is the ratio of the set of all retrieved document pairs

deemed as relevant over the set of document pairs that are connected. Thus, the relevant documents are those that

were marked as Strongly Agree & Agree, while the set of document pairs that are connected consists of those that

have a semantic connectivity score greater than a given threshold (see Equation (5)).

Pw =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, iff |Φτretrieved | = 0

|Φτretrieved ∩ Φrelevant |
|Φτretrieved |

, otherwise
(5)

where Φrelevant is the set of retrieved document pairs that are relevant and Φτretrieved is the set of all connected

document pairs greater than a given threshold (τ).
The recall (Rw) is the ratio of the set of retrieved documents that are relevant over the set of all relevant

document pairs according to the gold standard (see Equation (6)).

Rw =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, iff |Φrelevant(gs)
| = 0

|Φτretrieved ∩ Φrelevant |
|Φrelevant(gs)

| , otherwise
(6)

where Φrelevant(gs)
is the set of all relevant document pairs.

Finally, F1 measure shows the balance between precision and recall, and is computed as in Equation (7).

F1w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, iff (Pw + Rw) = 0

2 · Pw · Rw

Pw + Rw
, otherwise

(7)

5. Results

In this section, we report evaluation results for the document connectivity approaches. For each method,

we present the results for their ability to discover latent connections between pairs of resources. Furthermore,

we also present an in-depth analysis of their shortcomings and advantages for discovering connections between

documents.

7http://www.wikipedia.org
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5.1. Document connectivity results

Table 2 shows the results according to the gold standard presented in the Likert scale, where users evaluated

if a given entity pair could be connected in a document. Compared with the gold standard, 368 entity pairs out of

812 could have some connection.

From the set of entities that could co-occur in a document, 51% of those entities were also connected based

on our gold standard, while 34% were Undecided. Analysis of the results for the Undecided category will be

provided in Section 5.2, since these results are of particular interest in establishing latent relationships between

Web resources.

Table 2: Total number of results for the GS in Likert-scale.

Strongly Agree Agree Undecided Disagree Strongly Disagree

96 272 139 165 140

The performance of each method is shown in Table 3. As in the task of entity connectivity, S CS w performs

slightly better than CBM in terms of precision, while CBM is better in terms of recall. F1 measure is similar, with

60.0% and 59.6% for S CS w and CBM, respectively. In both cases, ES A has the lowest performance.

The positive correlation of entity connectedness and their co-occurrence in the same document was 79.6%,

78.0% and 23.5% for S CS w, CBM and ES A respectively, considering only the Strongly Agree and Agree relevance

judgement results.

As already indicated in the introduction in Section 1, our proposed semantic approach can be exploited to

measure document connectivity by taking into account the connectedness of entities that describe a document

and their semantic connections. Indeed, as shown by the positive correlation of entity connectivity and entity co-

occurrence in a document, we claim that our approach can be used as method for inferring document “relatedness”

where other statistical models would fail.

To validate the usefulness of our approach, we compared the results against the well established document

relatedness measure tf-idf. Our approach was able to find 500 unique connections between documents, whereas tf-
idf found only 25. As described in Section 4.1, our corpus is composed of small descriptions of the news articles,

which severely limits the ability of tf-idf to identify connections between them.

We also conducted an experiment to evaluate the uncovered connections by both methods. We found that

16% of the connections found by our approach were relevant, compared with 12% using tf-idf. We took into

consideration that the recall achieved by tf-idf is only 3.6%, whereas for S CS w, it is close to 86%.

5.2. Analysis of the Results

Table 3 shows the results for the task of document connectivity. The mixed approach CBM+S CS w performs

best on finding the co-occurrence of entity pairs in a document. It is worth noting as well that the co-occurrence

of entity pairs for documents can be retrieved with high recall (90%) when using the proposed combination of

CBM+S CS w.

A positive correlation of entity connectivity and co-occurrence in a document is of high importance for our

proposed approach, allowing to establish newly constructed knowledge that can be represented as an aggregate of

the entity connections.

We would also like to point out the challenges posed by our approach to creating a gold standard. As previously

mentioned, while our work aims at detecting semantic connectivity of entities beyond traditional co-occurrence

based approaches, this results in connections that might be to some extent unexpected yet correct, according to

background knowledge (such as DBpedia in our case). Hence, using a manually created gold standard, though

being the only viable option, might impact the precision values for our work in a negative way, as correct con-

nections might have been missed by the evaluators. This has been partially confirmed by the large number of

detected co-occurrences which were marked as undecided by the users, where manual inspection of samples in

fact confirmed meaningful connections between entity pairs. This confirms that in a number of cases connections
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Table 3: Precision, recall and F1 measure amongst methods.

CBM S CS w ESA CBM+S CS w

Precision 0.47 0.49 0.21 0.51

Recall (GS) 0.80 0.77 0.25 0.89

Recall 0.49 0.48 0.15 0.54

F1 (GS) 0.59 0.60 0.23 0.64

F1 0.48 0.48 0.18 0.52

were not necessarily incorrect, but simply presented information that was unknown to the users. Thus, we believe

that a more thorough evaluation providing the evaluators with information on how a connection emerged, where

we show all properties and entities that are part of a path greater than one, would give more reliable judgements.

6. Conclusion and future work

We have presented a general-purpose approach to discover and quantify document connectivity. To compute

document connectivity, we first introduced a semantic-based entity connectivity approach (S CS e) which adapts

a measure from social network theory (Katz) to data graphs, in particular Linked Data, and extended it to in-

terlink documents (S CS w). S CS w was able to uncover 16% of unique inferred document connections based on

entity co-occurrence, not found by the state of the art method CBM. Additionally, while using a combination of

CBM+S CS w we achieved an F1 measure of 52%.

Our experiments show that S CS w enables the detection and establishment of document connectivity that a

priori linguistic and co-occurrence approaches would not reveal. Contrary to the latter, our approach relies on

semantic relations between entities as represented in structured background knowledge, available via reference

datasets. A combination of our semantic approach and traditional co-occurrence-based measures provided very

promising results for detecting connected documents. While both approaches (CBM and S CS w) produce fairly

good indicators for document connectivity, an evaluation based on Kendall’s τ rank correlation showed that the

approaches differ in the relationships they uncover [16]. A comparison of agreement and disagreement between

different methods revealed that both approaches are complementary and produce particularly good results when

combined: the semantic approach is able to find connections between entities that do not necessarily co-occur in

documents (found on the Web), while the CBM tends to emphasize entity connections between entities that are

not necessarily strongly connected in reference datasets.

As for future work, we aim to apply weights to different edge/property types according to their inherent seman-

tics in order to provide a more refined score and to investigate means to combine our complementary approaches.
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