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Abstract. Web browser users return to Web pages for various reasons.
Apart from pages visited due to backtracking, they typically have a num-
ber of favorite/important pages that they monitor or tasks that reoccur
on an infrequent basis. In this paper, we introduce the architecture of
a system that facilitates revisitations through the effective prediction of
the next page request. It consists of three layers, each dealing with a
specific aspect of revisitation patterns: the first one estimates the value
of each page by balancing the recency and the frequency of its requests;
the second one captures the contextual regularities in users’ navigational
activity in order to promote related pages, and the third one dynami-
cally adapts the page associations of the second layer to the constant
drift in the interests of users. For each layer, we introduce several meth-
ods, and evaluate them over a large, real-world dataset. The outcomes
of our experimental evaluation suggest a significant improvement over
other methods typically used in this context.

1 Introduction

Revisitation is the act of accessing again a previously visited Web page. As such,
it constitutes a major part of the entire Web activity: Web users usually have
to handle repetitive but infrequent tasks, revisiting pages after a considerable
amount of time [4]. This was verified by most past works that explored users’
surfing behaviors; Herder [10], for instance, quantifies it to 50% of the overall
Web traffic, while Cockburn and McKenzie [4] approximate it to 80%. As a
result, individuals have been found to waste 15% of their overall browsing time
in their effort to find information they have accessed in the past [18]. They can
benefit, therefore, to a large extent from browser-based methods that predict
and facilitate their next revisitation request.

The most popular tools for client-side revisitation are bookmarks [4, 10] and
search engines [18, 19]. The former, though, had their popularity significantly
declined in favor of the latter, as they involve serious managing and organiza-
tional problems: the size of bookmark collections constantly increases with time,
thus reducing their usability [4]. Search engines, on the other hand, are becom-
ing the dominant tool for supporting revisitation, with about 40% of all queries
pertaining to re-finding ; that is, the process of using the same or a similar query
to re-locate a previously visited Web page. However, the use of search engines
is impractical, as it requires the memorization of a usually hard-to-remember



combination of keywords [11]. There is, therefore, a great need for new methods
that predict and facilitate users’ revisitation activity.

In this paper, we introduce a system architecture that encompasses a set of
methods aligned in three tiers. Each layer captures specific patterns in the nav-
igational activity of a user, in order to effectively predict her next revisitation:
the first one, the ranking layer, comprises functions that rank visited resources
according to their likelihood of being (re-)accessed in the immediate future. The
second one, called propagation layer, enhances the ranking methods with tech-
niques that encapsulate contextual patterns in the behavior of a user; that is,
it identifies groups of pages visited together during the same session - in the
same or different order - and boosts their ranking values accordingly. Finally,
the third tier, the drift layer, conveys methods that adapt the patterns captured
by the propagation layer to the changing nature of the interests of the user. On
the whole, our framework constitutes a comprehensive method for revisitation
prediction, that covers all its aspects (i.e.., frequency and recency of page re-
quests, contextual patterns and concept drift), while being easy to implement
and integrate into a user interface.

Special care has been taken to make our framework extensible, so that adding
new methods or improving existing ones, in any of its three tiers, is a straight-
forward procedure. This is indeed ensured by the transparency of the strictly
defined interfaces described in Section 3. We have also made public both the
implementation and the data used in this paper under the SUPRA1 project of
SourceForge2. Thus, we provide a common benchmark for new algorithms in this
area, and encourage other researchers to experiment with our library and extend
it with improved or novel techniques.

To summarize, the main contributions of this paper are the following:

– We introduce a layered architecture for a system that effectively addresses
the next revisitation prediction problem. It consists of three tiers, each tack-
ling a specific aspect of the problem.

– We coin several methods for each layer, based on the navigational and the
time patterns of individual user’s activity.

– We evaluate the methods of our library through a thorough experimental
study that involves a voluminous, real-world dataset. The results verify its
superiority over well-established methods for this problem.

The rest of this paper is organized as follows: in Section 2 we discuss related
work, while in Section 3 we formally define the problem we are tackling and
elaborate on the architecture of our system. Section 4 analyses our thorough
evaluation study, and Section 5 wraps up our work with final remarks and future
plans.

2 Related Work

A problem more general than the next revisitation prediction has has been exten-
sively studied in the literature: the next page prediction problem. The method

1 SUPRA stands for “SUrfing Prediction fRAmework”.
2 See http://sourceforge.net/projects/supraproject.



that has prevailed in this field, at least in terms of popularity, is Association
Rules Mining. In more detail, association rules (AR) effectively identify related
resources without taking into account their order of appearance (e.g., pages that
are typically visited together, in the same session, but not necessarily in the same
order) [1, 2]. This feature turns them ideal for recommending resources related
to a particular site. Numerous works have investigated the functionality of dif-
ferent variations of AR [7, 12, 16]. For example, a recent work by Kazienko [12]
explores indirect AR for Web recommendations, involving resources that are not
“hardly” connected as in typical AR.

However, AR suffer from a variety of drawbacks: first, they rely on the most
frequent patterns identified in the training set, thus misclassifying new patterns
that are not included in it (e.g., patterns stemming from concept drift). Second,
they fail to recommend rarely visited, and, thus, non-obvious and serendipitous
items, since such resources never reach the minimum support limit3. Third, they
disregard the order of itemsets, and cannot distinguish between different patterns
that involve the same resources (i.e., an itemset I1 = {1, 2, 3} is treated equally
with all its 6 permutations).

To overcome this last problem, sequential patterns have also been employed
in the context of prediction methods. Among them, state-based methods, like
Markov models, are particularly popular [20, 6, 3]. Sequence mining techniques
constitute a variation of this approach, in the sense that they do not consider the
strict order between items [2, 15]. A comparison of these techniques with AR was
conducted by Géry and Haddad [8], with the outcomes of their evaluation sug-
gesting that Frequent Sequence Mining has the best performance. Nevertheless,
all these methods still suffer from the inability to predict/recommend unseen
items (i.e., not included in the training set, typically due to concept drift).

With the aim of introducing a prediction method that is equally effective
with unseen data, Awad et al. [3] combined the Markov model with Support
Vector Machines (SVM) under Dempster’s rule. Their experimental evaluation
verified the superiority of their hybrid model over AR, especially when domain
knowledge is incorporated into it. However, their method is quite impractical:
it requires a different SVM classifier for each one of the available resources and,
thus, entails an excessively high training time.

In the following sections, we propose a layered system architecture for re-
visitation prediction that overcomes the shortcomings of existing works, while
taking their advantages into account. To this end, the first layer incorporates
techniques that estimate the value of visited pages from the frequency and the
recency of their requests. The second layer, on the other hand, captures the
connections between pages visited during the same session, either by consider-
ing or by ignoring their order of access. Its novelty lies in its ability to identify
new associations on-the-fly and to incorporate them dynamically into its data
structure. To discard the connections that are outdated due to the drift in the

3 The problem of identifying rare but important associations has been tackled through
the multiple minimum support method. This technique, however, has not yet been
applied in the context of the next page prediction problem.



Fig. 1. The layered architecture of our revisitation prediction system.

interests of a user, we introduce another layer encompassing a window-based
drift method; it re-adjusts the associations between pages after a certain period
of time, so that they reflect the latest patterns in the user’s activity.

3 Approach

The problem we are tackling in this paper consists of the task of identifying
which Web page, among those visited by a specific user in the past, will be
revisited in her next page request. More formally, we define it as follows:

Problem Statement. Given the collection of Web pages, Pu = {p1, p2, ...},
that have been visited by a user, u, during her past n page requests, Ru =
{r1, r2, . . . , rn}, order them accordingly, so that the ranking of the page pi that
she will revisit in her next request, rn+1, is the highest possible.

The above definition stresses that the goal is to facilitate the access to pages
that have already been visited in the past, rather than trying to recommend not-
visited but relevant ones. To serve this goal, we present a collection of methods
that produce a ranking of all visited Web pages; the more likely a Web page is to
be accessed in the next request, the higher its ranking. The ranked list of pages
is updated after each page visit, and the higher the ranking of the subsequently
accessed page, the better the prediction. This is in line with the intuition behind
the ranking of search engines’ results to keyword queries: users typically consult
only the top 10 results, and the higher the ranking of the desired resource, the
better the performance of the search engine [9].

Figure 1 depicts the architecture of our system, that encompasses three tiers
of methods. The first one entails ranking methods, which estimate for each Web
page the likelihood that it will be accessed in the next request. Their estimation
is derived from patterns in the surfing history of the underlying user, namely
the recency and the frequency of accesses to each page. The second layer cov-
ers propagation methods; these are techniques that capture repetitiveness in the
navigational activity of the underlying user and identify contextual associations
between pages that are typically visited together (i.e., in the same session, but



not necessarily in the same order). Depending on the degree of connectivity be-
tween the associated Web pages, their values (assigned by the ranking methods)
are then propagated to each other. The third layer contains window-based drift
methods, which adapt the associations encapsulated by the propagation methods
to the volatile interests of the user. They employ a sliding time frame (e.g., of a
day or a week) that periodically discards the connections that took place out of
its borders. On the whole, these three layers provide a comprehensive framework
that tackles all aspects of the revisitation activity.

In the following, we present and analyze several techniques for each layer.
Their implementation is already freely available through the SUPRA project of
SourceForge. In this way, we encourage other researchers to experiment with
them and to extend our library with new methods for every layer. Special care
has been taken to make this a straightforward procedure, by providing clear
guidelines through the formalization of the methods that are presented in the fol-
lowing sections. Any implementation complying with the minimal requirements
for a ranking, a propagation and a drift method, as described in Definitions 1
to 8, can be easily integrated in our library. It is also worth noting that the
real-world data employed in our experiments have also been publicly released
through the Web History Repository project4, so that they can be used as a
general benchmark for prediction algorithms, independently of our framework.

3.1 Ranking Methods

As mentioned above, the aim of a ranking method is to provide for each Web
page a numerical estimation of the likelihood that it will be accessed in the next
request. All pages are then sorted in descending order of their value, with the
aim of placing the next revisited page to the highest possible ranking. After each
page visit, the value of all pages changes, and the ranked list is updated. The
reason is that the numerical estimation of each page is derived by contrasting
the latest page visit with all (or part) of the past requests to that particular
page; depending on the way the page’s access history is handled, we distinguish
two kinds of ranking functions: the event- and the time-based ones.

Time-based Ranking Methods. This family of ranking functions relies on
the time the requests to a page occurred, in order to estimate its value. That
is, the contribution of each request to the total value of the corresponding page
depends on the actual time the respective page visits took place and the time that
has elapsed ever since. Thus, the input of these methods principally comprises
the request timestamps of each page:

Definition 1. Given the page requests Ru of a user u, the request timestamps
of a page pi, Tpi , is the set of timestamps of those requests in Ru that pertain
to pi.

4 See http://webhistoryproject.blogspot.com.



A time-based ranking method can be now defined as follows:

Definition 2. A time-based ranking method is a function that takes as input
the request timestamps Tpi = {t1, t2, . . . , tk} of a page pi together with the time
of the latest request, tn, of the given user u, and produces as output a value for
pi, vpi ∈ [0, 1], that is proportional to the likelihood that it will be accessed at the
next page request, rn+1 (i.e., the closer vpi is to 1, the higher this likelihood).

In our system, we selected Frecency (FR) as representative of this kind of
ranking methods. The reason is that it is integrated in one of the most popular
Web browsers, namely Mozilla Firefox5. In essence, it places more emphasis on
the frequency of the use of a Web page, and discounts only to some extent
the influence of the very old visits. In more detail, the total ranking value of
each page is equal to the sum of the values assigned to each of its requests;
the value of a single page visit is called bonus and its size is proportional to
its recency: requests occurring within the last four days take the highest bonus,
whereas requests that are older than 90 days take the lowest one. In addition,
FR considers the type of access, i.e., whether the URL of the page was typed,
clicked upon or selected from the bookmarks collection. This is, however, out of
the scope of our definition6. Note that to restrict the ranking values of Frecency
in the interval [0, 1], our implementation normalizes the value of each page with
the globally largest page value.

Event-based Ranking Methods. In contrast with the previous category,
event-based ranking methods interpret page visits as a sequence of events, and
exclusively take into account their relative position. That is, they disregard the
actual time of each request, and consider only the number of events that have
elapsed since it occurred, in order to estimate its contribution to the total value
of the corresponding page. Thus, this family of methods represents the access
history of a page by the indices of the related requests:

Definition 3. Given the page requests Ru of a user u, the request indices
of a page pi, Ipi , is the set of the serial numbers of those requests in Ru that
pertain to pi. The serial number of the chronologically first request is 1 and is
incremented by 1 for each subsequent page visit.

Given this definition, an event-based ranking method is defined as follows:

Definition 4. An event-based ranking method is a function that takes as
input the request indices Ipi = {i1, i2, . . . , ik} of a page pi together with the
index of the latest request, in, of a user u, and produces as output the value of
pi, vpi ∈ [0, 1], that is proportional to the likelihood that pi will be accessed at the
next page request, rn+1 (i.e., the closer vpi is to 1, the higher this likelihood).

5 See http://www.mozilla.com/en-US/firefox.
6 See https://developer.mozilla.org/en/The Places frecency algorithm for

more details.



As an illustration of the this kind of methods, we consider the decay ranking
model that was introduced by Papadakis et al. in [14]. According to this model,
the value of a Web page pi after in visits is derived from the following formula:

DEC(pi, Ipi , in) =

|Ipi |∑
j=1

d(ij , in),

where d(ij , in) is a decay function that takes as an input the index ij of a request
to pi together with the index of the current page vist, in, and gives as output
the contribution of this request to the total value of pi.

According to Cormode et al. [5], every valid decay function should satisfy the
following properties:

1. d(ij , in) = 1 when ij = in
2. 0 ≤ d(ij , in) ≤ 1 ∀ij ∈ [0, in]
3. d is monotone non-increasing as n increases:

i′n ≥ in → d(ij , i
′
n) ≤ d(ij , in) ∀ij ∈ [0, in].

Among the valid decay function families, the Polynomial Decay (PD) func-
tions were found by Papadakis et al. [14] to outperform both the exponential and
the logarithmic ones. The reason is that their smooth decay balances harmon-
ically the recency and the frequency of page revisits; in contrast, exponential
functions convey a steep decay that puts more emphasis on recency, whereas the
logarithmic functions promote excessively frequency, due to their overly slow de-
cay. The actual value of a polynomial decay function with exponent α for a page
pi at the ij − th request out of in, in total, accesses is given from the following
formula:

d(ij , in) =
1

1 + (in − ij)α
. (1)

The main difference between Polynomial Decay and Frecency, apart from the
evidence they take into account, is the balance they achieve between frequency
and recency. Frecency favors the former over the latter, thus constituting a mere
improved version of the Most Frequently Used caching algorithm. On the other
hand, Polynomial Decay achieves a better balance between these two metrics,
while being more flexible, as well. In fact, it can be adapted to the behavioral
patterns of the underlying user, employing the value of α in Formula 1 as a
fine-tuning parameter; the larger its value (1 << α), the higher the effect of
recency on the overall value of a page (due to the steeper the decay of the
contribution of a page request), and vice versa. Thus, Polynomial Decay can
adjust its performance to different kinds of users.

3.2 Propagation Methods

Unlike ranking methods that produce an ordering of Web pages, propagation
methods aim at capturing contextual information through the detection of pat-
terns in the surfing activity of users. They identify those pages that are commonly



visited within the same session and associate them with each other. The “links”
created by these methods are then combined with a ranking method, so that the
value of a Web page is propagated to its relevant ones. In this way, the higher
the value of a Web page, the more the pages associated with it are boosted and
the more their ranking is upgraded.

At the core of the associations between resources lies the notion of the session,
which can be formally defined as follows:

Definition 5. A session S is the bag of all pages pi visited by a user u in the
same browser tab for a time period of up to 25.5 minutes ([8, 17]), placed in
chronological order, from the earliest to the latest one: S = {p1, p2, . . . , pk}.

Based on Definition 5, propagation methods can be defined as follows:

Definition 6. A propagation method is a function that takes as input the
last requested page, pi, within a session, S, and defines appropriately the degree
of connection between pi and all the other pages visited during S. Hence, given
two pages, X and Y , it returns a value, vXY ∈ [0, 1], that is proportional to the
likelihood of Y being accessed immediately after X (i.e., the closer vXY is to 1,
the more likely this transition is).

In this work, we distinguish two families of propagation methods: the order-
preserving ones, which take into account the order of the page requests within a
session, and the order-neutral ones that disregard this order. For the former case,
we consider transition matrices, whereas for the latter we examine association
matrices.

Order-Preserving Propagation Methods. This category of propagation
methods relies on the idea that Web pages are typically accessed in the same
or similar order. Hence, given a session that contains a series of page requests
ordered by time, they build the associations between pages according to this
ordering: each page is connected only with the pages that precede it. To capture
these transitions that form chronological patterns in the navigational activity of
users, we introduce the transition matrix (TM).

In more detail, a TM is a two dimensional structure with its rows and columns
representing the Web pages P visited so far by the given user u (Problem State-
ment); each cell TM(x, y) expresses the number of times that a user visited
page y after x. Given that a transition matrix respects the order of accesses
within a session, it is not a symmetrical one: the value of TM(x, y) is not nec-
essarily equal to that of TM(y, x). Moreover, its diagonal cells are all equal to
0: ∀x TM(x, x) = 0. This is because there is no point in associating a page
with itself; in case a requested Web page is revisited in the subsequent request,
its ranking will be high enough due to the value assigned to it by the ranking
method and does not need to be boosted by the propagation method.

In the following, we introduce 4 different techniques for correlating Web pages
according to the past navigational activity in the context of a transition matrix.



Fig. 2. The values of several types of the Transition and the Association Matrices after
the last page request of the session: S1 : A → B → C → D → A. a) corresponds to
SM, b) to CM, c) to DM, d) to IM, and e) to AM.

They are intuitively illustrated through a simple walkthrough example. Given
a set of 4 Web pages - A,B,C,D - and the following set of requests during a
given session, S1 : A→ B → C → D → A, we can associate these pages in four
different ways (taking into account the order of the accesses):

1. Simple Connectivity Transition Matrix (SM). For each transition x→
y in the given session, only the value of the cell TM(x, y) is incremented
by one. The frequencies defined by this rule work exactly as a first-order
Markov model. The rationale behind this approach is, thus, the expectation
that requests tend to occur in the same strict order. Figure 2(a) depicts the
values of the transition matrix according to this rule after the last transition
of the given session, D → A.

2. Continuous Connectivity Transition Matrix (CM). Each Web page
visited within the current session is associated with all the previously ac-
cessed pages. In this way, it can effectively support requests that take place
in a similar order, i.e., in the same direction, but not necessarily in the same
sequence (e.g., X → Z → Y and X → Y ). In our example, A is associ-
ated with all other Web pages after transition D → A, incrementing the
corresponding cells by one (Figure 2(b)).

3. Decreasing Continuous Connectivity Transition Matrix (DM). This
strategy operates in a similar way as the previous one with the difference that
it increments the cells of TM by a decay parameter representing the distance
(i.e., number of transitions) that intervenes between the corresponding Web
pages. Therefore, this form of transition matrix lies in the middle of SM and
DM, supporting evenly requests that occur either in the same or in similar
order. In our example, TM(C,A) is incremented by 1/2 after D → A, since
page C is two steps away from the page A. Figure 2(c) depicts the whole
DM after the transition D → A.

4. Increasing Continuous Connectivity Transition Matrix (IM). This is
the inverted version of the previous strategy. Instead of decreasing the value
added to TM(x, y) according to the distance of pages x and y, it increases it
proportionally. Hence, it results in stronger connections between pages that
are more distant, in an effort to identify the final destination of the given
session. By boosting its value early enough, it can significantly restrict the
number of irrelevant pages that the user visits before reaching its actual page



of interest. The matrix produced by this rule after the last transition of our
example is presented in Figure 2(d).

It is worth noting that SM is also used in Awad et al. [3], but its frequencies
are merely used as features to a classification algorithm. In addition, CM is also
employed in Parameswaran et al. [15] as the means of providing the frequencies
of the probabilistic analysis that precedence mining involves.

Order-Neutral Propagation Methods. In contrast to the order preserving
methods, the order-neutral ones are based on the idea that the temporal order of
page visits within a session is not important; pages that are visited in the course
of the same session should be equally connected with each other, regardless of
their order and the number of transitions that intervene between them. The
rationale behind this idea is that users may visit a group of pages X,Y, Z on a
regular basis, but not necessarily in that order.

To model this idea, we introduce the association matrix (AM); similar to
TM, AM is a matrix whose rows and columns are the Web pages P visited so
far by the given user. The difference is that AM is built simply by associating all
pages visited in a single session with each other; i.e., each Web page is connected
not only with the pages preceding it, but also with those following it. Thus,
an AM is always a symmetrical matrix with all its diagonal cells equal to 0
(∀x AM(x, x) = 0). Given the session S1 of the above example, the resulting
AM has all non-diagonal cells equal to one, as all resources were accessed during
this session (Figure 2(e)).

Combining Ranking with Propagation Methods. To combine a ranking
method with one of the propagation techniques, we employ a simple, linear
scheme: following the in-th page request, the value of all pages is (re)computed,
according to the selected ranking method. Then, for each non-zero cell of the
matrix at hand (TM(x, y) or AM(x, y)), we increment the value assigned to
page y by the ranking method, vy, as follows:

vy+ = p(x→ y) · vx, where

– p(x → y) is the transition probability from page x to page y, estimated by

p(x→ y) = TM(x,y)∑in

i
TM(x,i)

(or p(x→ y) = AM(x,y)∑in

i
AM(x,i)

), and

– vx is the value of x estimated by the ranking method.

3.3 Drift Methods

Unlike the ranking methods, the propagation ones encompass no inherent sup-
port for drift in the focus of user’s interests: the connections stored in their data
structure (i.e., matrix) remain static, and, thus, cannot adapt to the constantly
changing habits and interests of users. In the literature, two main approaches
that support concept drift have been proposed: first, the decay functions, like



the polynomial one, and, second, the window-based methods [13]. The latter
take their name from the sliding window they employ in order to keep the most
recent evidence and ignore the rest.

To enable the dynamic nature of the propagation methods, we introduce in
our system a third layer that consists of a window-based drift method, operating
on the data structure of the second layer. Depending on the way the size of
the window is specified, we distinguish between event-based and time-based drift
methods; the former define the window with respect to the size of a batch of
requests, whereas the latter with respect to a period of time. More formally, the
time-based drift methods are defined as follows:

Definition 7. Given the page requests Ru of a user u, the matrix m of a prop-
agation method and a time period t, a time-based drift method updates the
connections stored in m so that they reflect the page requests of Ru that occurred
in the latest t temporal units (e.g., days or weeks).

Similarly, the event-based drift methods are defined as follows:

Definition 8. Given the page requests Ru of a user u, the matrix m of a prop-
agation method and a number of requests n, an event-based drift method
updates the connections stored in m so that they reflect the page requests of Ru
that occurred in the latest n page requests.

Due to the temporal, periodic patterns we identified in the large, real-world
data set we have at our disposal, we considered only time-based drift methods.
Thus, in our experimental study we examine the Day-, the Week- and the
Month-model. As their name suggests, they update the matrix of the under-
lying propagation method so that it maintains the associations of the last day,
the last week and the last month, respectively.

4 Evaluation

Data Set. To thoroughly evaluate our approach, we employed a real-world,
voluminous data set that was gathered through the Web History Repository
project. It comprises the navigational activity of 200 users, logged in the time
period between 30/09/2010 and 11/01/2011. In total, more than 580,000 page
requests were recorded. They are not, though, evenly distributed over the partic-
ipants; characteristically, there are 100 users with less than 1,000 requests (with
a minimum of 200), and 18 users with more than 10,000 requests (with a max-
imum of 16,570). The distribution of the logging period per user varies greatly,
as well, ranging from 1 to 278 days. On average, though, each user issued almost
3,000 page requests, in a time period of 38 days. One third of them constituted a
revisit, thus producing a revisitation rate that is a bit lower than the estimation
of Herder et al. [10] in 2005. Regarding the demographics (e.g., age and sex)
of the participants, we do not have any relevant data at our disposal, since the
volunteers contributed their navigational history anonymously. Note also that
the sessions in the data set are set transparently by the browser, not necessarily
according to the time criterion of Definition 5. The technical characteristics of
our data set are summarized in Table 4.



Users 200 Av. Requests per User 2,914
Page Requests 582,853 Av. Web Pages per User 1,905
Web Pages 381,066 Av. Revisits per User 1,009
Sessions 91,300 Av. Sessions per User 457
Revisits 201,787 Av. Requests per Session 126.40
Revisitation Rate 34.62% Av. Days per User 37.72

Table 1. Technical characteristics of the WHR data set we employed.

Setup. In the course of our experimental evaluation, we simulated the naviga-
tional activity of each user independently of that of the others: her page requests
were sorted in ascending order of time, and the simulation proceeded by one re-
quest at a time, starting from the earliest and moving to the latest one. A ranked
list of the so-far-visited pages was maintained per user, and, after each page re-
quest, the ranking of all pages was updated, according to our prediction methods;
if the next page request was not a revisitation, the new page was added to the
list. Otherwise, the position of the corresponding Web resource was recorded.
Based on the ranking positions we collected, we evaluate the performance of the
prediction algorithms in terms of the following metrics:

(i) Success Rate at 1 (S@1) denotes the portion of revisitations that
pertained to the top ranked Web page. The higher this percentage, the better
the performance of the prediction method.

(ii) Success Rate at 10 (S@10) stands for the percentage of revisitation
requests pertaining to a page that is ranked in some of the top 10 positions.
Similar to S@1, the higher its value, the better the performance of the method.
This metric expresses the actual usability of a prediction algorithm, as users
typically have a look only at the first 10 pages presented to them, just like they
do with Web search engine results [9].

(iii) Average Ranking Position (ARP) represents the place a revisited
page is found on average in the ranking list of the method at hand. Thus, it
provides an estimation of the overall performance of a prediction algorithm,
considering the ranking position of all revisitations, and not just the top ranked
ones. The lower its value, the better the performance of the prediction method.

On the whole, the combination of these three metrics provides a compre-
hensive estimation of the effectiveness of a prediction algorithm: it considers
both its practical recommendations (S@1, S@10) and its performance over all
revisitations (ARP).

Results Analysis. As baseline approaches for the evaluation of our system, we
consider the individual ranking methods of Section 3, i.e., FR and PD; they have
already been proposed in the literature, and the former actually constitutes the
state-of-the-art method, as it is integrated in a popular browser (Mozilla Firefox),
and is widely used. The goal is, thus, to verify that combining existing ranking
methods with the propagation and the drift ones enhances their performance to
a significant extent and results in more accurate predictions.
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Fig. 3. Performance in percentage (%) with respect to S@1 and S@10 for the selected
prediction methods. The methods are placed in ascending order of S@10 from left to
right, with the right-most one achieving the optimal performance.

In total, our framework accommodates (2 ranking methods × 5 propagation
methods × 3 drift methods =)30 combinations of prediction methods. Due to
lack of space and for the sake of readability, we will consider only 6 of them, in
addition to the baseline ones: the best of combination of each ranking method
with an order-neutral and an order-preserving propagation method, as well as
the best combination of ranking and propagation methods with the day-model
drift method. The criterion for choosing the best combination of ranking and
propagation methods was their performance for S@10, the most indicative metric
for the usability of a revisitation prediction method. In this aspect, both ranking
functions maximized their performance when combined with SM. On the other
hand, the selection of the drift method was determined by the characteristics
of our data set, which does not cover the long-term navigational activity of
the participants (apart from a couple of users); rather, it contains their short-
or their mid-term activity (i.e., few days and weeks, respectively). Nevertheless,
our evaluation enables us to examine the contribution of each layer to the overall
performance, independently of that of the others7.

The results of the evaluation for the first two metrics are presented in Fig-
ure 3, while Figure 4 depicts the performance of the selected methods for ARP.
In both cases, the methods are ordered from left to right in ascending order of
performance, so that the right-most method exhibits the best performance.

In the case of S@1 and S@10, we can easily notice that the performance
of ranking methods is substantially improved by both the other levels of the
system. Actually, the best performances are achieved when all three layers are
employed in conjunction. This is particularly true for PD and its combinations
with AM, SM and the Day Model, with the complete method (PD+SM+Day
Model) improving PD by 52.84% and 29.41% with respect to the S@1 and S@10,
respectively. FR, on the other hand, is improved to a lower extent by the three-

7 Note that there is not point of examining the performance of ranking methods in
combination with the drift ones alone, since the latter apply only to the data struc-
ture of the propagation methods.
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layered model by 6.8% and 17.41%, respectively. All improvements of the second
layer over the first and the third over the two other layers, were found to be
statistically significant (p < 0.05), with the exception of FR+AM over FR.

Regarding ARP, we notice the same patterns: the more layers are employed,
the better the overall performance of our system. It is worth noting that the
degree of improvement for FR is much higher in this case: it ranges from 18.66%
for FR+SM to 27.87% for FR+SM+Day Model. For PD, the improvements fluc-
tuate between 29.38% for PD+SM and 35.88% PD+SM+Day Model. Again, all
improvements of one layer over the underlying ones were found to be statistically
significant (p < 0.05).

It is worth noting that the order-preserving propagation methods outperform
the order-neutral ones for S@1 and S@10, while having a lower performance with
respect to ARP. The reason is that, unlike SM, AM does not identify the most
relevant page(s) to the currently accessed one; rather, it uniformly associates
each page with all other pages visited during the same sessions. Thus, AM evenly
distributes the value of the most recently visited page among all relevant pages,
leading to higher ARP, whereas SM merely boosts the value and the ranking of
the most likely next pages. The success rate gets, therefore, substantially higher,
but ARP is not improved at a lower rate.

5 Conclusions
In this paper, we presented a layered architecture for a system that facilitates the
revisitation activity of users, through accurate predictions. It consists of three
tiers, each addressing a particular aspect of this phenomenon: the recency and
frequency of patterns of revisitations, their contextual patterns as well as the
ever-changing interests of a user. Our thorough experimental evaluation verified
that each layer conveys significant improvements over the prevalent method for
this task (i.e., Mozilla Firefox’s Frecency). On the whole, our system predicts
the next revisited page in 37% of the cases, while its top-10 recommendations
contain the desired page in 68% of the cases. Given that different users receive
the optimal recommendations for different methods, in the future we plan to



investigate ways of inferring a priori the optimal combination of methods for
each user. In addition, we intend to examine whether our system is applicable
in the context of server-side recommendations, as well (e.g., in the case of the
intranet of a large company).
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